nc

The Microprocessor Unit

CTEC1332
Software Engineering Practices
2023 Fall

@Nl ara
College
Canada

AAAAAAAAAAAAAA

Computer

* A computer is a programmable machine
designed to sequentially and
automatically carry out a sequence of
arithmetic or logical operations.

* The particular sequence of operations
can be changed readily, allowing the
computer to solve more than one kind of
problem.

Source: https://en.wikipedia.org/wiki/Computer

2023-09-10 Microprocessor Unit 2

https://en.wikipedia.org/wiki/Computer

Microprocessor

* A microprocessor incorporates the functions of a computer's central
processing unit (CPU) on a single integrated circuit (IC).

* It is a multi-purpose, programmable device that accepts digital data
as input, processes it according to instructions stored in its memory,
and provides results as output.

Source: https://en.wikipedia.org/wiki/Transistor count

https://en.wikipedia.org/wiki/Transistor_count

MPU

* The microprocessor unit (MPU) is classified as a complex, VLSI (very
large scale integration) device.

* VLSI refers to the number of component parts that can be packed into
the chip.

* In 2020, a microprocessor is comprised of several billion such
components...

* The microprocessor circuit is
attached to the motherboard by a
multipin connector socket.

- . Y
e Often, just the name of the MPU is used to i_ﬁ‘w &

describe the status of a whole computer
system — for example, 2.4 GHz i9.

2023-09-10 Microprocessor Unit 5

MPU — Chip Die (colourized)

2023-09-10 Microprocessor Unit

MPU Chip Layout
| g R MDD R R A VAL (35

f
!

,

CPU
Core

CPU
Core:

CPU
Core

e
ﬁ
o &

auae)y £
L3 Cache
ayIel £7

ol
=
¥
]
bt
|
-l

aljae) £
L3 Cache

aylxe) £
L3 Cach
(@
(@
ﬂ

et
SyEtE m Ring Intcnt. Ring Intl:nl:l. Ring Int;::nl.Jv. Ring Inl:_cn.t!.
ﬁg Eﬂt Agents Agents Agents Agents

CPU
Core

CPU
Core

CPU
Core

CPU :
Core'

ey g7
3 Cache
yaed g1

=
L3 Cache
ayzed g1
L3 Cache
e £

L3 Cache

o
L

2023-09-10 Microprocessor Unit

MPU Functions

* The MPU's main functions are often summed up as being the “brains”
of the computer but the functions are, more specifically,

e addressing and data transfer,
 decision making,
 timing and control,

e arithmetic and logic operations,

MPU Functions

* The MPU's main functions are often summed up as being the brains of the
computer but the functions are, more specifically,

 fetching data and instructions from memory,
* decoding instructions,
* reporting on computer status,

* responding to control signals (reset and interrupts) from 1/O devices.

Evolution of the Microprocessor Chip

A brief chronology of microprocessor chip development is

1971 Intel 4004 2250
1978 Intel 8086 16 29000
1979 Intel 8088 16/8 29000
1982 Intel 80286 16 134000
1985 Intel 80386 32 275000
1989 Intel 80486 32 1180235
1992 DEC Alpha 21064 64 1680000

2023-09-10 Microprocessor Unit

Evolution of the Microprocessor Chip

A brief chronology of microprocessor chip development is

2023-09-10

Make & Model m Transistor Count

2003
2004
2006
2007
2018
2019
2019

AMD K8

Intel Pentium 4

Intel Core 2 Duo

AMD K10

Qualcomm Snapdragon 8cx
Apple A13

AMD Ryzen 9 3900X

Microprocessor Unit

32
64
64
64
64
64

105,900,000
112,000,000
291,000,000
463,000,000
8,500,000,000
8,500,000,000
9,890,000,000

11

Evolution of the Microprocessor Chip:
Present Day
* Intel: 13th Generation: Core i3, i5, i7, i9 (13000 series)

 AMD: Zen 3+, 4: Ryzen 5, 7, 9 (7000 series)

 ARM: Cortex A520/A740/X4

* Qualcomm Snapdragon 7, 8, 8+; G1/G2/G3X; Microsoft SQ2
* Apple A16 Bionic, M1 Ultra, M2/M2 Pro/M2 Max/M?2 Ultra
* Exynos (Samsung) 1300 series

2023-09-10

Moore’s Law — The number of transistors on integrated circuit chips (1971-2018)

Maoore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are

linked to Moore's law.

50,000,000,000
72-core Xeon Phi Centriq 2400 &GC2 IPU
SPARC M
IBM 213 Storage Gm!m-‘ﬁe’r A W”S?Efzﬁ?ém.c
10,000,000,000 16.coeYoon '1?::1"3'02"\ g\ﬁs.,ﬁ::’a;amm T
5,000,000,000 B-core Xeon P 2} iSlleon Kiin 980 + Apple A12 Blonic
a -core Xeon nméi @:M;E 3l mgg Corgn? Br%msll E
7400, . + s i
Duak-core R 50 T 3 .t o oggg;,cg;:m %pdﬁgocfg,g,r O]
Pentium D Presler d-gore + GPU Core i7 Haswell
1,000,000,000 piieon \’Owl:% °® e o e S
500,000,000 P e sﬁ; ‘é«o 30 qﬁn core 2M L3
Pentium D Smithfields,
In@ndurm 2 Maokinkeyegy | %&:ra 2 Dun Wolfdale 36
Pantium 4 Prescoit-2 \mﬂ”@ﬁﬁ”ﬁ“
TUO.UDO,DDU AMD K’E‘ 0F‘raﬁllum 4 Prascolt :
Pentium 4 Morth
= 50,000,000 AT L Mt
= Pantium I Mobie Dixo
8 itk a’\K'ID K?nz ?Pem:um 1l Coppermina PAAM Cortex-A9
2 AMD -1
o 10,000,000 AME K6 ﬁmu il K
W LIS T ¥ i
@ 5,000,000 pm”'“ e “0 pﬁ*
iy
@ o
= SATI10
intel
1,000,000 ® o
500,000 Tonerstiie e
Intel 80 BHRM 3
Motorola samu:.% &Lﬂ:ﬂt
100,000 %ﬂ‘o Inlel%?% ulllﬁlan 6%
50 DCIIJ irtal 80185 :

Intes BlAEGe Qrintel S05E MM 2

10,000 TMggo0 Zilog 280 8&%’8""‘ 5& a6 %ﬁ

5,000 er™ St s

Inted 8008, '“3'
Iked d&ld oy g Tocmow

1,000

ﬁﬂtﬁ

O AL Ak Ao D W a9 © B Q9 © & O L0 L e L0
\é‘.é‘.é\,é‘.é\@@@@ﬁﬁﬁﬁk@g Q@@m@h@)@@"r&\@\@\@N

Data source: Wikipedia (https.Ven.wikipedia.org/wiki/Transistor_count)

The data visualization is available at QurWorldinData.org. There you find more visualizations and research on this topic.

Licensed under CC-BY-SA by the author Max Roser,

Microprocessor Unit

13

MPU Architecture — Bus Structure

Address bus

|

L

Control
bus

Control
bus

Data bus

Input/ Central
Output processing Memory
ports ‘ unit
I | |

The MPU contains three buses —
address, data and control.

A bus is a communication system
that transfers data between
components inside a computer.

https://en.wikipedia.org/wiki/Bus (computing)

https://en.wikipedia.org/wiki/Bus_(computing)

MPU Architecture — Bus Structure

Address bus

g I
Input/ Central
Output processing Memory
ports ‘ unit
. | |

The MPU contains three buses --
address, data and control:

- S 1. Address bus. The MPU selects
e bus addresses of memory locations
Data bus and 1/0 devices and places them

on the address bus (one at a
time).

MPU Architecture — Bus Structure

Address bus

The MPU contains three buses --
l l i address, data and control:
Input/ Central IH
Output prucegsing Memory) o]]
ports ! unit 2. Data bus. This bidirectional bus is
b e, o used to transfer information along
bus bus the microprocessor, memory, and
Data bus I/O ports'

Many different devices are
connected to this bus, but only one
at a time is activated by either a
chip select or chip enable signal.

MPU Architecture — Bus Structure

Address bus

| 1 |

Control Control
bus bus

Data bus

)
Input/ Central
Output processing Memory
ports unit
;! | 1 | N

The MPU contains three buses --
address, data and control:

3. Control bus. Timing and memory
control signals, such as address
signaling, memory read/write,
and other computer-controlled
information, are carried by the
control bus.

MPU Architecture — Memory Hierarchy

Storage Device (with programs and data) =
Memory ™ Processing by CPU mp

Memory ™ Storage Device

/" CPU a bus /0 bus
. C Memory
Registers h
=

[1/0 Devices '

2023-09-10 Microprocessor Unit

18

MPU Architecture — Memory Hierarchy

CPU
Registers

/O bus .
Disk

memory
reference

Register Cache Memory | I/O Devices
reference reference reference

A cache is a small, fast memory located close to the CPU
that holds the most recently accessed code or data. When
the CPU does not find a data item it needs in the cache,

a cache miss occurs, and the data is retrieved from main
memory and put into the cache.

The typical levels in the hierarchy slow down
and get larger as we move away from the CPU.

MPU Architecture — Memory Hierarchy

Memory
bus

- CPU

Register Cache
reference reference
Level
Called
Typical size

Access time (ns)
Bandwidth (GB/s)

Managed by

Memory
reference

1
Registers
<1kB

1

Compiler

{110 Devices '

Cache
<1GB
<10

Hardware

3

Main memory
4 GB - 64 GB
> 10

10-25

Operating system

4

Disk storage
500GB-2TB
> 40,000

6

Operating
system/user

Latency Numbers Every Programmer Should Know

ins

L1 cache reference: 1ns

Branch mispredict: 3ns

L2 cache reference: 4ns

Mutex lock/unlock: 17ns

2023-09-10

1
llllllllll
100ps = W

Main memory reference: 100ns

1,000ns = 1ps

Compress 1KB wth Zippy: 2,000ns =

EEEEEEEEEE
EEEEEEEEEN
EEEEEEEEEE
EEEEEEEEEE
AEEEEEEEEEN
EEEEEEEEEE
EEEEEEEEEE
EEEEEEEEEE
EEEEEEEEEE
ENEEEEEEEE
10,000ns = 10ps = ™

Send 2,000 bytes over commodity network: 31ns

SSD random read: 16,000ns = 16ps

Read 1,000,000 bytes sequentially from memory: 2,000ns =

Round trip in same datacenter: 500,000ns = 500ps

Source: https://colin-scott.github.io/personal website/research/interactive latency.html

Microprocessor Unit

21

2us

https://colin-scott.github.io/personal_website/research/interactive_latency.html

Latency Numbers Every Programmer Should Know

EEEEEEEEEE

EEEEEEEEEE

EEEEEEEEEE M

EEEEEEEEEE

EEEEEEEEEE

========== Read 1,000,000 bytes sequentially from disk: 718,000ns = 718ps

EEEEEEEEEE

EEEEEEEEEE

EEEEEEEEEE

1,000,000ns = 1ms =N S
EEEEEEEEEE
IIIII=IIII

) EEEEEEEEEE

Read 1,000,000 bytes sequentially from SSD: 39,000ns = 39us ==========
EEEEEEEEEE
EEEEEEEEEE
EEEEEEEEEE
EEEEEEEEEE

]] EEEEEEEEEE
EEEEEEEEEE
EEEEEEEEEE

Disk seek: 2,000,000ns = 2ms

2023-09-10

Packet roundtrip CA to Netherlands: 150,000,000ns = 150ms

Source: https://colin-scott.github.io/personal website/research/interactive latency.html

Microprocessor Unit 22

https://colin-scott.github.io/personal_website/research/interactive_latency.html

Latency Numbers Every Programmer Should Know

If L1 access is a second, then:

L1 cache reference : 0:00:01 Read 4K randomly from SSD : 3 days, 11:20:00

Branch mispredict : 0:00:10 Read 1 MB sequentially from memory : 5 days, 18:53:20
L2 cache reference : 0:00:14 Round trip within same datacenter : 11 days, 13:46:40
Mutex lock/unlock : 0:00:50 Read 1 MB sequentially from SSD : 23 days, 3:33:20
Main memory reference : 0:03:20 Disk seek : 231 days, 11:33:20

Compress 1K bytes with Zippy : 1:40:00 Read 1 MB sequentially from disk : 462 days, 23:06:40

Send 1K bytes over 1 Gbps network : 5:33:20 Send packet CA->Netherlands->CA : 3472 days, 5:20:00

Source: https://gist.github.com/jboner/2841832

2023-09-10 Microprocessor Unit 23

https://gist.github.com/jboner/2841832

MPU Architecture — Instruction Execution

Instruction pointer

_________ |
|
w I
z ¥
4 P
0 i Code cache
H o
; =
Memory a)] =
Code Instruction decoder

L

Floating-point unit

]
|
I
1
|
|
|
|
I
|
1
|
|
|
I
|
|
|
Diata :
I
|
|
|
|
1
I
|
|
|
|
|
I
|
|
|

* If program instructions are to be read
from memory, an address is placed on
the address bus.

* Next, the memory controller places
the requested code on the data bus.

* This allows the code to be available in
the inside the code cache.

Source: https://www.allaboutcircuits.com/technical-articles/an-introduction-to-x86-processor-architecture/
Retrieved on July 28, 2020

Control unit
Registers
ALL i
Data cache
+ -
|
_________ -
2023-09-10

Microprocessor Unit

https://www.allaboutcircuits.com/technical-articles/an-introduction-to-x86-processor-architecture/

MPU Architecture — Instruction Execution

* The instruction pointer’s value (IP, also
; known as the “program counter” [PC])

L¥ata bus
Address hus

- Lo e b determines which program instruction
- R — will execute next.
o [T . — * The instruction is analyzed by the
| | SR pre— instruction decoder, causing the
A appropriate digital signals to be sent to
e the control unit.
o i

Source: https://www.allaboutcircuits.com/technical-articles/an-introduction-to-x86-processor-architecture/
Retrieved on July 28, 2020

https://www.allaboutcircuits.com/technical-articles/an-introduction-to-x86-processor-architecture/

MPU Architecture — Instruction Execution

_________ - * The control unit (also known as the
j : “controller sequencer”) coordinates

e e the ALU (“arithmetic-logic unit”) and
floating-point unit.
o [T . — * The control bus is not shown, but it

N Sl pr—— carries various signals the use the

| A system clock to coordinate the

Data cache transfer of data between the different

. CPU components.

Source: https://www.allaboutcircuits.com/technical-articles/an-introduction-to-x86-processor-architecture/
Retrieved on July 28, 2020

https://www.allaboutcircuits.com/technical-articles/an-introduction-to-x86-processor-architecture/

MPU Architecture — Reading from Memory

Cycle 1 Cycle 2 Cycle 3 Cycle 4

e Reading instructions (code) or
SO W WNe W e e . data from memory uses the

processor clock (CLK).

Address

ADDR

e * The clock triggers on a falling
N edge (change from high to low [1
DATA___ | ~IX to O])

Source: https://www.allaboutcircuits.com/technical-articles/an-introduction-to-x86-processor-architecture/

Retrieved on July 28, 2020
2023-09-10 Microprocessor Unit 27

https://www.allaboutcircuits.com/technical-articles/an-introduction-to-x86-processor-architecture/

MPU Architecture — Reading from Memory

e e ol e 1. The address bits are placed on
L . — — the address bus (ADDR).
wes | | 2. Theread line (RD) is set low.
______________________________________ 3. The CPU waits one cycle to
RD allow the memory controller to
place the data on the data bus
DATA |~] . (DATA)

4. The read line goes high, which
signals the CPU to read the
data.

Source: https://www.allaboutcircuits.com/technical-articles/an-introduction-to-x86-processor-architecture/
Retrieved on July 28, 2020

https://www.allaboutcircuits.com/technical-articles/an-introduction-to-x86-processor-architecture/

Intel/AMD Processor Registers

* The first processor in the x86 family was the 8086

* In modern processors, this mode of operation is known as “Real
mode” (or “Real-address mode”)

* Registers in 8086
* 4 segment registers (16-bit)
* CS, DS, SS, ES
e 8 general-purpose registers (16-bit)
* AX, BX, CX, DX, SP, BP, SI, DI

CPU
Operating
Modes:
State
Diagram

https://en.wikipedia.org/wiki/X86-64

2023-09-10

Processor that
introduces
each mode

AMD Opteron

Intel 803865L

Intel 803860X

Intel 802386

Intel 8086

Mode application
was written for

System
Management
Mode

Microprocessor Unit

Real 16-hit 32-hit B64-bit
Protected Protected Mode
Mode Mode Mode
Long Mode
A bd-hit
Compatibility Mode P "
A
Legacy Mode
- | h 4
Virtual Protected Mode
8086 <P
Mode
Real
Mode |
30

https://en.wikipedia.org/wiki/X86-64

X36
Registers
— 8-bit &
16-bit

https://en.wikipedia.org/wiki/Intel 8086#Registers and instructions

2023-09-10

Intel 8086 registers

el e ls e 0% % %5 % % % % % Y Oy (it position)
Main registers
A A A oy s
© B BLL T BX (oase, accumulator)
I R - (courier, accumeor]

(B B X s, e i
registers

Source Index
Destination Index

Base Pointer
Stack Pointer

0000 CodeSegment

0000 DataSegment
0000 ExtraSegment

D000 Stack Segment

Status register

INNERERNRERERNEE -

Microprocessor Unit

31

https://en.wikipedia.org/wiki/Intel_8086%23Registers_and_instructions

X36
Registers
— 32-bit

https://en.wikipedia.org/wiki/Intel 80386

2023-09-10

Intel BO386 registers
3 s .. % .. % (bit position)
Main registers (8/16/32 bits)

R A s

Index registers (1652 bits)

I S oo e
1B [0 oo
o w @ swerens
CER s

Program counter (16/32 bits)

e oo

Segment selectors (16 bits)

Code Segment
Data Segment
ExtraSegment
F Segment

G Segment
Stack Segment

Status register

111111110 0 0.0 000000
7 65 4321 088T7TE654 3 2 1 p(biposiion)

L L] B

Microprocessor Unit

32

https://en.wikipedia.org/wiki/Intel_80386

X86-64/
Intel 64/
AMDG64

Registers —
64-bit

http://amd-dev.wpengine.netdna-
cdn.com/wordpress/media/2012/10/24592 AP

General-Purpose
Registers (GPRs)

R10 Flags Register

R11 [0 [eFLAGS] ReLAGS
R12

63 0

Instruction Pointer

M v11.pdf

2023-09-10

R15 EIP | RIP
63 0 63 0

|:| Legacy x86 registers, supported in all modes

|:\ Register extensions, supported in 64-bit mode

Microprocessor Unit

33

http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/24592_APM_v11.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/24592_APM_v11.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/24592_APM_v11.pdf

Basic Execution Environment: Non-64-bit Modes

Basic Program Execution Registers Address Space*

) . 2732 -1
Eight 32-bit
Reqisters General-Purpose Registers
Six 16-bit ;
Registers Segment Registers
| 32-bits | EFLAGS Register
| 32-bits | EIP (Instruction Pointer Register)
FPU Reqgisters
Eirg ht EiD -Dit Floating-Point
EQISteErs Data Registers 0
. *The address space can be
Control Register flat or segmented. Using
Status Register the physical address
. . extension mechanism, a
Tag Register physical address space of
I:I Opcode Register (11-bits) 2736 - 1 can be addressed.
| 48 bits | FPU Instruction Pointer Register
| 48 bits | FPU Data (Operand) Pointer Register

Source: Intel 64 and IA-32 Architectures Software Developer’s Manual, Vol. 1. Intel Corp., May 2020.

2023-09-10 Microprocessor Unit

34

Basic Execution Environment: Non-64-bit Modes

MMX Reqgisters Bounds Registers

Eight 64-bit Four 128-bit Reqgisters
Reqisters MMX Reqisters

BNDCFGU BNDSTATUS

XMM Registers

Eight 128-bit
Reagisters XMM Registers
| 32-bits | MXCSR Register
YMM Registers
Eight 256-bit
Registers YMM Registers

Source: Intel 64 and IA-32 Architectures Software Developer’s Manual, Vol. 1. Intel Corp., May 2020.

2023-09-10 Microprocessor Unit

Basic Execution Environment: 64-bit Mode

Basic Program Execution Registers Address Space
Sixteen 64-bit 2764-1
Registers General-Purpose Registers
Six 16-bit .
Registers Segment Registers
| 64-bits | RFLAGS Register
| 64-bits | RIP (Instruction Pointer Register)

FPU Registers

Eight 80-bit Floating-Poi
] g-Foint
Registers Data Registers
Control Register
Status Reqister O

Tag Register

[] Opcode Register (11-bits)
|
|

FPU Instruction Pointer Register
FPU Data (Operand) Pointer Register

| 64 bits
| 64 bits

Source: Intel 64 and IA-32 Architectures Software Developer’s Manual, Vol. 1. Intel Corp., May 2020.

2023-09-10 Microprocessor Unit

Basic Execution Environment: 64-bit Mode

MMX Registers

Bounds Registers

Eight 64-bit Four 128-bit Registers
Reqisters MMX Registers
BNDCFGU BNDSTATUS
XMM Registers
Sixteen 128-bit
Registers XMM Registers
| 32-bits | MXCSR Register

YMM Registers

Sixteen 256-bit
Reqgisters

YMM Registers

Source: Intel 64 and IA-32 Architectures Software Developer’s Manual, Vol. 1. Intel Corp., May 2020.

2023-09-10

Microprocessor Unit

37

I X 31302928 272625242322 2120191817 16151413121110 9 8 7

[1]

Y Y Al o
olofofofalofofofofo|T|t{A[MIRIe|Y] S |2|R|F
L

ID Flag (1D} |
Virtual Interrupt Pending (VIP)

Virtual Interrupt Flag (VIF)
Alignment Check (AC)
Virtual-8086 Mode (VM)
Resume Flag (RF)
Mested Task (NT)
I/O Privilege Level (I0OPL)
Overflow Flag (OF)
Direction Flag (DF}
Interrupt Enable Flag (IF)
Trap Flag (TF)
Sign Flag (SF)

Zero Flag (ZF)

Auxiliary Carry Flag (AF)
Parity Flag (PF)

NN XX WXXX XX XXX

Carry Flag (CF)

Indicates a Status Flag
Indicates a Control Flag
Indicates a System Flag

*
RFLAGS is the 64-bit equivalent: Reserved bit positions. DO NOT USE.
Bits 22-63 are reserved Always set to values previously read.

= Oow

EFLAGS In x36

3.4.3.1 Status Flags

The status flags (bits 0, 2, 4, 6, 7, and 11) of the EFLAGS register indicate the results
of arithmetic instructions, such as the ADD, SUB, MUL, and DIV instructions. The
status flag functions are:

CF (bit 0) Carry flag — Set if an arithmetic operation generates a carry or
a borrow out of the most-significant bit of the result; cleared

otherwise. This flag indicates an overflow condition for
unsigned-integer arithmetic. It is also used in multiple-precision

arithmetic.

PF (bit 2) Parity flag — Set if the |least-significant byte of the result
contains an even number of 1 bits; cleared otherwise.

AF (bit 4) Adjust flag — Set if an arithmetic operation generates a carry

or a borrow out of bit 3 of the result; cleared otherwise. This flag
is used in binary-coded decimal (BCD) arithmetic.

ZF (bit 6) [Zero flag — Set if the result is zero; cleared otherwise.

SF (bit 7) /Sign flag — Set equal to the most-significant bit of the result,
which is the sign bit of a signed integer. (0 indicates a positive
. value and 1 indicates a negative value.)

OF (bit 11) /Overfluw flag — Set if the integer result is too large a p05|t|ve\
number or too small a negative number (excluding the sign-bit)
to fit in the destination operand; cleared othgirwise. This flag
indicates an overflow condition for signed-integer (two’s
\complement) arithmetic.

S

/

2023-09-10 Microprocessor Unit

Machine Code and Assembly Language

* The native tongue of the computer is binary.

* In a computer, all words can be interpreted as 8-bit words —as bytes.

000000600
11111111,

004¢
FFig

910
2554,

* If you were to communicate with the computer directly you would
have to use 8-bit binary words as the basic means of telling the
machine what to do.

Machine Code and Assembly Language

* As humans, it would be difficult for us to communicate where all the
alphanumeric characters are just O and 1.

* This difficult and lowest-level language is called machine language.

* It is a little easier to use to express a byte (8-bit word) in hexadecimal,
67 in hex is more easily said and thought of than 01100111 in true
binary.

* Because this is one step closer to human language, speaking in hex
would be our next higher-level language.

Machine Code and Assembly Language

* When we “speak” to the computer, we are really speaking to the
microprocessor.

* Its “brain” then takes over and issues timely commands to the rest of
the machine necessary to accomplish a given task.

* The act of “speaking” is programming, and results in machine code.

* The “issuing of timely commands” is program execution, where the
MPU interprets the code.

Machine Code and Assembly Language

* The designers of a microprocessor provide us with a third higher-level
language called assembly language.

* It allows use to communicate with the microprocessor
using mnemonics, short abbreviations such as ADD, SUB, MUL and
DIV, that are more understandable to humans.

* Each microprocessor (or processor family) has a complete set of
these, commonly referred to as the assembly language instruction
set.

Machine Code and Assembly Language

* There is also assembly-to-machine-language translator for the
microprocessor, a program commonly referred to as the assembler.

* Suppose we have a program will add two numbers (5 and 7) and store
the sum in memory.

* | can write this program in machine code, assembly language, orin a
high-level language like C.

Machine Code and Assembly Language

* Suppose we have a program will add two numbers (5 and 7) and store
the sum in memory. Here is a C program:

B int
2 main(void)
3 8§
4 int X, vy, z ;
-
6 . :
; y = B
Z =V + X,

2023-09-10 Microprocessor Unit 45

Machine Code and Assembly Language

* | can run the C compiler to translate this into both assembly language
and machine code.

cl runs the Microsoft
Compiler and Linker —
It normally creates .obj
and .exe files;

JFAc is the compiler
switch to output
assembly language and
machine code;

/FA outputs assembly
language only

&R »86 Native Tools Command Prompt for VS 2019

C;\2020F\ctec1332\srcic] /FAC add.c_' .
Microsoft (R) C/C++ O er Version 19.24.28316 for x86

copyright (C) Microsoft Corporation. All rights reserved.

add.c
Microsoft (R) Incremental Linker version 14.24.28316.0
copyright (C) Microsoft Corporation. All rights reserved.

/out:add.exe
add.obj

C:\2020F\ctec1332\src>dir add.*
volume in drive C is Windows

Assembly language listing (from /FA switch)

vVolume Serial Number is C65F-C783 C source Code (Saved by Notepad++)
Directory of C:\2020F\ctecl332\src
07/29/2020 12:09 PM 744 add.asii Machine language + assembly language listing
07/28/2020 05:06 PM 92 add.c .
07/29/2020 12:09 PM 967 add.cod (from /FAC switch)
07/29/2020 12:09 PM 79,872 add.exe
07/29/2020 12:09 PM 608 add.obj
5 File(s) 82,283 bytes

Windows (32-bit) executable (“application”)

Object file (“relocatable” machine code)

Machine Code and Assembly Language

* Here is (part of) the translation output that shows the
correspondence between all three languages:

t Line 6 18 "X =
P06 c7 45 f8

AL ._“II

oY Yo
: Line 7 1s "y =

ARG A AL A7
Ly AW c7 "+ A fc
i~ i

) {""::-J
: Line B 15 "I =
90014 8b 45 fc
PPO17 63 45 8
PPB1la 89 45 4

2023-09-10

SII

85 00
mov
?Il
07 00
mov
x + 3{II|
mov
add
mov

Microprocessor Unit

DWORD PTR _x$[ebp]l, 5

DWORD PTR _y$[ebp], 7

eax, DWORD PTR _y$[ebp]
eax, DWORD PTR _x$[ebp]
DWORD PTR _z$[ebp], eax

47

Machine Code and Assembly Language (32-bit)

i i - —_
% } ck' ‘:_:'5 1

mov

mov

mov
add

Addresses
(relative)

2023-09-10

89 45 f4 mov

H

Machine code
Instructions (opcodes)

Assembly language CPU registers
instructions (mnemonics) (32-bit)

Memory reads/writes

DWORD PTR _x$[ebp],| 5

Literals
(constants)

e |

DWORD PTR _y$[ebp],

eax, DWORD PTR _y$[ebp]
eax, DWORD PTR x$[ebp]

DWORD PTR _z$1,

Microprocessor Unit 48

Machine Code and Assembly Language

* If | compile in 64-bit mode, from a “x64 Native Tools Command
Prompt” the code is slightly different:

3 Line 6
c7

: Lina 7
200b c/

; Line 8

c8
8b cl

2023-09-10

mov

mov

mov
mov
add
mov
mov

Microprocessor Unit

DWORD PTR x$[rsp], &

DWORD PTR y$[rsp],

eax, DWORD PTR x$[rsr
ecx, DWORD PTR y$[rsi

ecx, eax

edx, ECX

DWORD PTR z$[rsp],

49

Machine Code and Assembly Language (64-bit)

Addresses
(relative)

2023-09-10

mov

mov

mov
mov
add
mov
mov

Machine code
Instructions (opcodes)

Memory reads/writes

DWORD PTR x$[rsp],

DWORD PTR y$[rsp],

eax, DWORD PTR x$[rsp]
ecx, DWORD PTR y$[rsp]

S

Literals
(constants)

) CPU registers (32-bit)
eax, (ecx

DWORD PTR z$.

rspll, eax

Assembly language

instructions (mnemonics)

Microprocessor Unit

\

CPU register
(64-bit)

50

Machine Code and Assembly Language

* If | compile on Linux (64-bit), the code is slightly different than the
Windows version.

Run the GNU C Compiler on add.c; the output
(executable) file is add.

enterprise2:~/src$ gcc -o add add.c

enterprise2:~/src$ file add | The file command reports on the contents of a file

add: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked (us
es shared libs), for GNU/Linux 2.6.18, not stripped

enterprise2:~/src$ 1ls -1 add On Linux, the executable
-rwxXrwxr-x. 1 mboldin mboldin 6293 Jul 29 13:40 * has no extension (execute
enterprise2:~/src$ gcc -g -0 add add.c permission instead)

enterprise2:~/src$ objdump -M intel -Stx add > add.dump

Recompile, with debug information (-g switch), then run
objdump and capture the output into a text file.

Machine Code and Assembly Language (64-bit Linux)

—%,
400478 :

- 4
40047f;
Z
400486
400489
40048cC:

40048F:
_ y

Addresses

(relative)

2023-09-10

2
Ga.% f4 05 o0 @@Q mov

? 3
c7 45 8 07 00 00 00 mov
y +|X ;
8b 45 14 mov
8b 55 8 mov
8d 04 02 lea

QELQE fc

Machine code
Instructions (opcodes)

/ mov
—/

Assembly language
instructions (mnemonics)

Microprocessor Unit

Memory reads/writes

DWORD PTR [rbp-

DWORD PTR [rbp-

-

_

@xc]|},@x5

0x8],0x7

~\

Literals
(constants)

W,

eax,DWORD PTR [rbpkoxc]

‘edx JDWORD_PTR
eax, [rdx+rax
DWORD PTR [r

rbp-0x8]
1]
)p-0x4

CPU registers
(64-bit)

eax

52

2023-09-10

THE END

Microprocessor Unit

Niagara

College
Canada

APPLIED DREAMS.
53

	The Microprocessor Unit
	Computer (Review from CTEC1184)
	Microprocessor
	MPU
	MPU
	MPU – Chip Die (colourized)
	MPU Chip Layout
	MPU Functions
	MPU Functions
	Evolution of the Microprocessor Chip
	Evolution of the Microprocessor Chip
	Evolution of the Microprocessor Chip: �Present Day (2023)
	Slide Number 13
	MPU Architecture – Bus Structure
	MPU Architecture – Bus Structure
	MPU Architecture – Bus Structure
	MPU Architecture – Bus Structure
	MPU Architecture – Memory Hierarchy
	MPU Architecture – Memory Hierarchy
	MPU Architecture – Memory Hierarchy
	Latency Numbers Every Programmer Should Know
	Latency Numbers Every Programmer Should Know
	Latency Numbers Every Programmer Should Know
	MPU Architecture – Instruction Execution
	MPU Architecture – Instruction Execution
	MPU Architecture – Instruction Execution
	MPU Architecture – Reading from Memory
	MPU Architecture – Reading from Memory
	Intel/AMD Processor Registers
	CPU Operating Modes:�State�Diagram
	x86 Registers – 8-bit & 16-bit
	x86 Registers – 32-bit
	X86-64/�Intel 64/�AMD64 Registers – 64-bit
	Basic Execution Environment: Non-64-bit Modes
	Basic Execution Environment: Non-64-bit Modes
	Basic Execution Environment: 64-bit Mode
	Basic Execution Environment: 64-bit Mode
	EFLAGS* in x86
	EFLAGS in x86
	Machine Code and Assembly Language
	Machine Code and Assembly Language
	Machine Code and Assembly Language
	Machine Code and Assembly Language
	Machine Code and Assembly Language
	Machine Code and Assembly Language
	Machine Code and Assembly Language
	Machine Code and Assembly Language
	Machine Code and Assembly Language (32-bit)
	Machine Code and Assembly Language
	Machine Code and Assembly Language (64-bit)
	Machine Code and Assembly Language
	Machine Code and Assembly Language (64-bit Linux)
	Slide Number 53

